MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Estimate the value of the quantity.

1) The table shows the velocity of a remote controlled race car moving along a dirt path for 8 seconds.

1) ______

Estimate the distance traveled by the car using 8 subintervals of length 1 with left-end point values.

Time	Velocity	
(sec)	(in./sec)	
0	0	
1	10	
2	24	
3	20	
4	30	
5	33	
6	35	
7	12	
8	5	
A) 169 in.		

- 169 in.
- B) 328 in.
- C) 164 in.
- D) 154 in.
- 2) Joe wants to find out how far it is across the lake. His boat has a speedometer but no odometer. The table shows the boats velocity at 10 second intervals. Estimate the distance across the lake using right-end point values.

Time	Velocity			
(sec)				
0	0			
10	12			
20	30			
30	53			
40	50			
50	55			
60	52			
70	55			
80	45			
90	15			
100	0			
A) :	367 ft	B) 5500 ft	C) 3770 ft	D) 3670 ft

Use a finite approximation to estimate the area under the graph of the given function on the stated interval as instructed.

- 3) $f(x) = x^2$ between x = 3 and x = 7 using a left sum with four rectangles of equal width.
- 3) _____

2) _____

A) 126

- B) 105
- C) 86

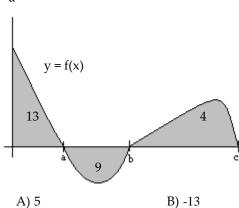
D) 117

Evaluate the sum.

4)
$$\sum_{k=1}^{7} k^2 - 4$$

4) _____

A) 140


B) 45

- C) 112
- D) 136

The figure shows the area of regions bounded by the graph of f and the x -axis. Evaluate the integral.

5) $\int_{0}^{\infty} f(x)$

5) _____

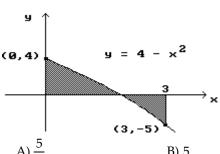
C) 13

D) -5

Solve the problem.

6) Suppose that f is continuous and that $\int_{-3}^{3} f(z) dz = 0$ and $\int_{-3}^{5} f(z) dz = 6$. Find $\int_{5}^{3} f(x) dx$. A) -12 B) -6 C) 6 D) 12

Compute the definite integral as the limit of Riemann sums.


7) $\int_{1}^{2} (5x - 1) dx$

A) $\frac{1}{2}$

B) 8

Find the area of the shaded region.

8) _

D) 3

Find the total area of the region between the curve and the x-axis.

9) $y = 2x - x^2$; $0 \le x \le 2$ A) $\frac{7}{3}$

2

D) $\frac{5}{3}$

Find the derivative.

10)
$$\frac{d}{dx} \int_0^x \sqrt{6t+9} dt$$
 10) _____

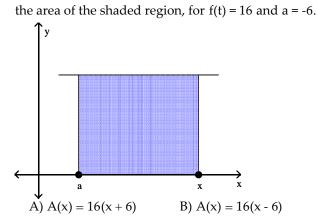
A)
$$\frac{1}{9}(6x+9)^{3/2}$$

B)
$$\sqrt{6x+9}$$

$$C) \frac{3}{\sqrt{6x+9}}$$

$$D)\sqrt{6x+9}-\sqrt{9}$$

$$11) \frac{d}{dx} \int_{1}^{\sqrt{x}} 18t^7 dt$$


11) _____

A)
$$18x^{7/2}$$

D)
$$\frac{9}{4}$$
x⁵ - $\frac{9}{4}$

Solve the problem.

12) Consider the graph of f shown in the figure. Find the area function $A(x) = \int_{a}^{x} f(t) dt$, where A(x) is 12)

C)
$$A(x) = 16x + 6$$

C)
$$A(x) = 16x + 6$$
 D) $A(x) = 16(6 - x)$